Vlasov stability of the Hamiltonian Mean Field model

نویسندگان

  • Celia Anteneodo
  • Raúl O. Vallejos
چکیده

We investigate the dynamical stability of a fully-coupled system of N inertial rotators, the so-called Hamiltonian Mean Field model. In the limit N → ∞, and after proper scaling of the interactions, the μ-space dynamics is governed by a Vlasov equation. We apply a nonlinear stability test to (i) a selected set of spatially homogeneous solutions of Vlasov equation, qualitatively similar to those observed in the quasi-stationary states arising from fully magnetized initial conditions, and (ii) numerical coarse-grained distributions of the finite-N dynamics. Our results are consistent with previous numerical evidence of the disappearance of the homogenous quasi-stationary family below a certain energy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical resolution of the Vlasov equation for the Hamiltonian Mean-Field model

We present in this paper detailed numerical Vlasov simulations of the Hamiltonian Mean-Field model. This model is used as a representative of the class of systems under long-range interactions. We check existing results on the stability of the homogeneous situation and analyze numerical properties of the semi-Lagrangian time-split algorithm for solving the Vlasov equation. We also detail limita...

متن کامل

Landau damping in Sobolev spaces for the Vlasov-HMF model

We consider the Vlasov-HMF (Hamiltonian Mean-Field) model. We consider solutions starting in a small Sobolev neighborhood of a spatially homogeneous state satisfying a linearized stability criterion (Penrose criterion). We prove that these solutions exhibit a scattering behavior to a modified state, which implies a nonlinear Landau damping effect with polynomial rate of damping.

متن کامل

2 00 9 Lyapunov stability of Vlasov Equilibria using Fourier - Hermite modes

We propose an efficient method to compute Lyapunov exponents and Lyapunov eigenvectors of long-range interacting many-particle systems, whose dynamics is described by the Vlasov equation. We show that an expansion of a distribution function using Hermite modes (in momentum variable) and Fourier modes (in configuration variable) converges fast if an appropriate scaling parameter is introduced an...

متن کامل

Title Nondiagonalizable and nondivergent susceptibility tensor in the Hamiltonian mean-field model with asymmetric momentum distributions

We investigate the response to an external magnetic field in the Hamiltonian mean-field model, which is a paradigmatic toy model of a ferromagnetic body and consists of plane rotators like XY spins. Due to long-range interactions, the external field drives the system to a long-lasting quasistationary state before reaching thermal equilibrium, and the susceptibility tensor obtained in the quasis...

متن کامل

Stability criteria of the Vlasov equation and quasi-stationary states of the HMF model

We perform a detailed study of the relaxation towards equilibrium in the Hamiltonian Mean-Field (HMF) model, a prototype for long-range interactions inN -particle dynamics. In particular, we point out the role played by the infinity of stationary states of the associated N → ∞ Vlasov dynamics. In this context, we derive a new general criterion for the stability of any spatially homogeneous dist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004